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1.0 SUMMARY

Two acetylene functional Schiff's base pyropolymers have been evaluated

as matrix materials for fiber reinforced composite materials. Autoclave

processing techniques were developed to produce high quality laminated

composites. These matrix resins can be made conductive through post-cure heat

treatments and were studied in a conductivity range from 1010 to 100 S/cm. The

insulating resin composites have very stable mechanical properties up to 3000 C;

however, these properties are significantly lower than state-of-the-art polyimides.

The post-processing heat treatments required to make the pyropolymers

conductive caused extensive transverse matrix cracking in the laminates.

2.0 INTRODUCTION

Organic composite materials are currently being used in both flight

critical and secondary applications on Navy aircraft. As aircraft technology has

advanced, there has been a demand for structural composites that are capable of

operating in higher temperature regimes. Applications of epoxy matrix

composite structures are limited to 1400C, bismaleimide structures to 180 0 C, and

polyimide structures to 300°C. These materials have been extensively

characterized and have been used in appropriate aircraft components (1-41.

Acetylene functional resins offer the potential for enhanced high

temperature composite applications. Various monomers have been synthesized

and polymerization processes for many of these monomers have been explored

[5-91. Walton has shown that acetylene functional Schiff's base resins can be heat

treated after polymerization to impart environmentally stable electrical

conductivity [7]. The conductivity level was increased from an insulator (10
-10
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S/cm) to a conductor (100 S/cm) by post curing the resin. Rossi, et al., have

recently reported on the thermal oxidative stability of these resins [8,91. This

study includes process development and assessment of the mechanical

performance of two graphite reinforced acetylene functional Schiff's base resins.

The use of these Schiff's base acetylene functional pyropolymers as composite

matrix resins has been examined at a wide range of conductivities.

3.0 EXPERIMENTAL APPROACH

The acetylene terminated Schiff's base monomers were supplied in powder

form by National Starch and Chemical Corporation, Bridgewater, NJ and two

isomers were investigated (Figures I and 2). Thermcon 1000 (TI000) and

Thermcon 2000 (T2000) are designated N,N'-[1,4-phenylenedimethylidyne bis-(3-

ethynylaniline)] and N,N'-[1,3-phenylenedimethylidyne bis-(3-ethynylaniline)],

respectively. Cure cycles were not available for processing these resins as

matrices in fiber reinforced composites; therefore, the initial portion of this study

involved development of a processing schedule germane to composite materials.

A test plan was developed to evaluate the mechanical performance and upper

use temperature of the materials. Tension, interlaminar shear, and fracture

toughness tests were performed. The composite fracture surfaces were examined

with a scanning electron microscope to determine the mechanisms of failure.

The thermal capabilities of the composite materials were investigated with

Dynamic Mechanical Analysis (DMA), Thermal Gravimetric Analysis (TGA) and

thermal cycling exposure.

3.1 COMPOSITE PROCESSING

Differential scanning calorimetry (DSC), autoclave processing,

nondestructive evaluation, and optical microscopy were used to develop and

2
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verify the cire cycles for the composite materials. A DuPont 1090 thermal

analy.0, system with a DSC module was used to monitor the heats of reaction of

the two resins during cure. TI000 and T2000 monomers were heated from 25 0C

to 3000 C at 1.5 0C per minute and composite cure cycles were developed from

the DSC results.

Composite laminates were prepared for cure by stacking layers of AS4 5-

harness woven graphite cloth and powdered resin in approximately a 40% resin

volume combination (Figure 3). The laminate was sandwiched between two

layers of porous release film and then a no-bleed bagging arrangement was

added (Figure 4).

Cured laminates were nondestructively inspected with pulse echo

ultrasonics. The quality of the composites was also assessed with

photomicroscopy of polished laminate cross-sections. Photomicrographs were

taken with a Nikkon Optophot-M optical microscope.

Some of the laminates received additional heat treatments to impart

conductivities to the matrix resins. Post-cure heat treatments were performed at

500 C and 600 C for 100 hours and a nitrogen purge was used to prevent

oxidative degradation of the polymers. Walton has shown that the conductivities

of the unreinforced resins after 100 hour heat treatments at 5000C and 6000C

are 10- 5 S/cm and 100 S/cm, respectively [6].

3.2 THERMAL PROPERTY EVALUATION

The thermal performance of the reinforced T1000 and T2000 resins was

evaluated by Dynamic Mechanical Analysis (DMA) and Thermal Gravimetric

Analysis (TGA). The DMA was run at 50C per minute from 25 0 C to 5000 C.

The TGA was run at 0.5 0 C per minute from room temperature to 500 0 C.

3
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Microcracking susceptibility of the composite materials were assessed by

examining the microstructure after thermal cycling. Composite specimens were

cycled from room temperature to 3000C with a five minute soak and an

average heat/cool rate of 600C per minute.

3.3 MECHANICAL PROPERTY EVALUATION

The mechanical property evaluation of the composite laminates consisted

of interlaminar shear, tension, and Mode I fracture toughness tests. Interlaminar

shear was evaluated with the ASTM D2344-76 short beam method. Testing was

performed at room temperature, 2000 C, and 3000 C conditions on AS4/T1000,

AS4/T2000, and AS4 unsized/T1000 composite specimens. Tension tests were

performed at room temperature on the AS4/T1000 material using the ASTM

D3039-76 test method. Mode I fracture toughness of AS4/T1000 was evaluated

with the double cantilever beam method [10].

4.0 DISCUSSION OF RESULTS

4.1 NON-CONDUCTIVE RESIN STATE

4.1.1 COMPOSITE PROCESSING

A DSC plot of T1000 resin heated at 1.50C per minute is shown in Figure

5. The melt temperature was determined to be 1380C and the exotherm

initiated at 148 0C. A preliminary cure cycle was developed for T1000 composite

materials and is shown in Figure 6. A short hold was included after the melting

point to allow the temperature distribution to stabilize within the part before

initiation of the cure reaction. The DSC plot in Figure 7 shows that little

reaction occurred during this hold.

4
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Initial attempts to cure the AS4/T-1000 composites using the preliminary

cure cycle resulted in laminates with high void contents (Figure 8). The large

surface area inherent in powders caused the T-1000 resin to absorb moisture

during laminate fabrication. Heating the resin under a dynamic vacuum oven

at 650C for 24 hours before laminate fabrication eliminated the absorbed

moisture and produced laminates that contained low void contents. Subsequent

composite laminates were processed with dried resins.

Microcracking occurred throughout the laminate's cross-section in the

AS4/T1000 composites that were processed with the preliminary cure cycle

(Figure 9). The cure cycle was altered to reduce the hold temperature from

2200C to 155 0C and microcracking was significantly reduced (Figures 10 and 11).

The lower cure temperature decreased the temperature at which gelation

occurred and helped to reduce the thermal stresses that resulted during cooling

to room temperature. Thermal analysis was performed to ensure that the

material had fully reacted during this improved cure.

A DSC plot of T2000 resin heated at 1.50C per minute is shown in Figure

12. The melt temperature was determined to be 850C and the exotherm

initiated at 158 0C. AS4/T2000 laminates were processed in an autoclave using the

cure schedule shown in Figure 13. Low void laminates were produced and no

microcracking was apparent (Figure 14).

4.1.2 THERMAL PROPERTIES

DMA in air shows that the moduli of the T1000 and T2000 composites

remain stable up to approximately 410 0C (Figures 15 and 16). TGA shows

composite weight loss in air initiates at approximately 3400C for both resins

(Figures 17 and 18). Thermal cycling results indicate that microcracking had

initiated after ten thermal cycles in both resin systems (Figures 19 and 20).

5
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4.1.3 MECHANICAL PROPERTIES

The interlaminar shear stress of AS4/T1000 was determined to be 19.75 MPa

at rooin temperature which is 100-300% lower than state of the art thermoset

materials reinforced with a similar graphite weave [3]. The AS4/T2000 had

interlaminar shear failure stresses that were similar to the values achieved by the

AS4/T1000 composite (Table 1). Both materials exhibited stable interlaminar shear

strengths up to 3000C. Interlaminar shear properties improved over room

temperature values by 7.1% at 2000C and 18.7% at 3000 C for AS4/T1000.

Elimination of the sizing from the AS4 fibers caused little change in the ILS

strengths obtained by the sized-fiber laminates. Tensile failure stress in the warp

direction of the 5-harness AS4/T1000 was found to be 475MPa. Scanning electron

microscopy of the tensile fracture surfaces (figure 21) show that fiber/matrix

bonding was poor. The tensile specimens failed in a delamination mode before

individual ply failure caused ultimate failure of the specimen (Figure 22).

Double cantilever beam testing showed that the strain energy release rate of

AS4/T1000 was 0.98 in-lb./in2 , significantly lower than state of the art organic

composite materials reinforced with woven graphite [12]. Post failure

fractography of the fracture surfaces showed that there was poor fiber/matrix

adhesion (Figure 23). The failure tended to propagate along the fiber/matrix

interface except at the small resin rich tow overlap areas where failure was

forced into the matrix. Attempts were made to measure the fracture toughness

of the unreinforced resin with compact tension specimens; however, notching the

specimens caused a crack to propagate through the entire specimen. Therefore,

the unreinforced pyropolymer is. so brittle that its fracture toughness can not be

measured with this test method.

6
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4.2 CONDUCTIVE RESIN STATE

TI000 and T2000 laminates were prepared for ILS testing after exposure to

the heat treatments required to render the materials conductive. These

specimens could not be cut with a diamond grit saw blade on a milling machine

without causing extensive delamination. Therefore, mechanical testing of these

laminates was not performed. Samples for microscopy were cut with a cooled,

rate controlled wafering machine to insure no damage was induced. Transverse

microcracks were found in each of the laminates as shown in Figure 24.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The processing techniques developed for graphite reinforced Thermcon

resin matrix composites are less complex and less time consuming than state of

the art polyimides [13]. A typical PMR-15 cure and post-cure are shown in

Figure 25 for comparison. The initial mechanical properties generated for these

material systems in the insulating state are significantly lower than those of state

of the art polyimides (3]. The failures propagated through the fiber/matrix

interfacial region indicating poor bonding characteristics. The development of a

more suitable sizing will improve the fiber/matrix bonding, provide better

translation of stresses, and result in improvements to the mechanical properties.

Increasing the molecular weight between crosslinks through the use of chain

extending oligomers may act to toughen this resin system, reduce its tendency to

microcrack, and enable it to be used as a composite matrix. Post-curing the

graphite reinforced pyropolymer laminates to produce conductive composites

resulted in laminates that are not capable of being used in load-bearing

structural applications.

7
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TABLE 1I INTERLAMINAR SHEAR STRENGTHS (MPa)

AS4lTIOOO AS4/T1000 AS4IT2000 T300/PMR15
(sized) (unsized) (sized)

25 0C 20.0 20.7 22.8 51.8

2000C 21.4 24.2 24.1 --

3000C 23.5 26.2 24.1 35.2
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Figure 6. Voided AS4/TI000 Laminate (75x)

Figure 9. Mlcrocracked AS4/TI000 Laminate (73x)
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Figure 11. improved AS4/TI000 Laminate (75x)
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Figure 19. AS4/T1000 After Ton Thermal Cycles (50x)

Figure 20. AS4/T2000 After Ten Thermal Cycles (S0x)
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Figure 21. SEM Fractograph of Tensile Failure (1000x)

Figure 22. AS4/T1000 Tensile Specimen
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Figure 23. SEM Fractogmaph of AS4/TI000 DCB Specimen (1000x)
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Figure 24. Microcracking In Conductive Resin Laminate (200x)
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